
DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-1 BRAWLER

DRAFT

2.0 CONCEPTUAL MODEL SPECIFICATION

The Conceptual Model Specification (CMS) presented here has been developed from
existing Brawler documentation and software and is intended to substitute for the Software
Design Document (SDD) called for in DOD-STD-2167A. Brawler is a mature model that
was originally developed during the 1970’s, before these standards were in place, and
therefore no SDD exists for it. This CMS provides a high level design description for
Brawler, along with detailed design descriptions and requirement specifications for
selected model components.

This CMS is being developed in stages, and is not yet complete. The current stage includes
operational concept and high-level design information. Brawler has been divided into
functional areas (top-level functions) which have been further divided into functional
elements (FEs) that represent individual model subsystems or functions of the physical
systems modeled. The functional areas and elements have been combined into a functional
area template (FAT) to allow for consistent numbering and cross-referencing of functional
elements across SMART Project documents. The Brawler FAT is presented in
Appendix B. Detailed design information for selected functional elements will be
incorporated as changes to this document.

2.0.1 OPERATIONAL CONCEPT

Brawler provides a detailed representation of air-to-air combat involving multiple flights
of aircraft in both the visual and beyond-visual-range (BVR) arenas. In such engagements
cooperative tactics and human factors such as surprise, confusion, and limited situation
awareness play a critical role in determining combat outcomes. Accordingly, special
emphasis has been placed on carefully simulating these aspects of the engagement process.
In addition, a high level of detail is achieved in the hardware models, including those of
aircraft aerodynamics, missiles, guns, expendables, radars, missile launch warning devices,
radar warning receivers, IRST, IFF, and NCID. Electronic countermeasures versus radars,
missiles, and communications are also handled. Hardware models are largely data driven,
and data bases describing most current generation US and threat systems for air-to-air
engagements are available.

Brawler is used in much the same way as one would use a combat exercise or flight test.
Each run simulates a single engagement between multiple aircraft. Just as a succession of
trials in a field exercise will produce very different outcomes, repeated runs of Brawler
(using different random number sequences), may produce very different engagements.
Thus, users typically generate multiple replications of a mission in order to fully explore
the set of possible outcomes. Analysis can be facilitated by interactive graphics that permit
displays of engagements from many perspectives, and by a report generator that produces
statistical analyses of ensembles of engagements. In cases where it has been possible to
compare Brawler with field exercises or man-in-the-loop simulations, the statistical
distribution of outcomes produced by the model have been quite close to those produced
using human pilots.

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-2 Update: 12/31/97

DRAFT

2.0.2 OVERALL CAPABILITIES

Engagement Size

Brawler is typically used to simulate engagements ranging in size from 2 to 20 aircraft.
Larger scenarios can be simulated, with a corresponding run time penalty, by changing a
small number of system parameters and recompiling the model.

Aircraft Aerodynamics Model

The aircraft aerodynamics model is a five degree-of-freedom (coordinated flight) model.
By five degrees-of-freedom, we mean three translational degrees-of-freedom plus rotation
and pitch. Yaw angle is assumed to be zero with respect to the direction of flight. The term
coordinated flight means that the use of rudder control is not explicit; any rudder required
to appropriately balance yaw forces is assumed.

• Each airframe is described by input data, the bulk of which consists of
aerodynamic tables (e.g., coefficient of drag versus coefficient of lift and Mach
Number).

• Other airframe data includes radio frequency (RF) and infrared (IR) signature
information.

• Munitions and other stores are described separately and are assumed to have
add-on contributions to drag and weight.

• Careful attention is paid to accurate lift, angle of attack, fuel flow, and thrust
values.

• Maneuver capabilities are modeled as first-order control systems (exponential
relaxation to desired roll and pitch rates) with dynamically varying time
constants. Many limits to the achievable rates are modeled.

Weapons Models

• Brawler has the capability to simulate five generic weapon types:
Missiles with multiple seekers IR heat-seeking missiles
Semi-active radar missiles
Active radar missiles
Anti-Radiation Missiles (ARM)
Guns

• Missile models are complex, although the level at which the aerodynamic
properties are modeled is somewhat below that used in the aircraft model.

• Missiles fly according to appropriate guidance laws, react to target aircraft
maneuvers, and respond to countermeasures in both their guidance and their
endgame calculations.

• Each missile is described by input data that specify its physical characteristics,
endgame effectiveness (detailed probability-of-kill tables are accommodated),
and guidance parameters.

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-3 BRAWLER

DRAFT

Radars Modeled

Brawler simulates the operation of pulse Doppler airborne intercept radars with a variety
of capabilities and options.

• Radars can operate in medium, high, or interleaved medium/high pulse
repetition frequency (PRF) modes.

• Detections are generated by Monte Carlo draws against a probability of
detection which is calculated from the signal-to-noise ratio.

• Numerous factors that affect the performance of real radar systems are treated
in the radar models, including clutter and ECM (noise jamming and certain
deceptive jamming techniques).

Infrared Search and Track (IRST)

The IRST model simulates an IRST characterized by variable scan patterns, an internal
trackbank, and an optional laser ranging capability.

• The tracking algorithms attempt to perform self-triangulation when only
directional information is available.

• The track bank is updated as the IRST sweeps across a target, so its information
is always “current” and ready to be utilized by code that simulates a sensor
fusion device.

• IR signatures are modeled at the level of treating plume, skin heating, and
engine hot parts separately, and distinguishing between sky and ground
backgrounds.

• The directional dependence of signatures is captured.

• The impact of IR clutter is treated statistically, assuming sensors perform spatial
and/or temporal filtering.

• Atmospheric transmission is handled for each of several defined IR bands, with
an implicit assumption of spectral uniformity within each band.

Radar Warning Receiver (RWR)

The RWR device detects radar emissions from other aircraft and from active missiles,
interprets these detections to form a “track” for the entity detected, and conveys the track
information to the pilot by means of a display. Both mainlobe and sidelobe emissions are
detectable.

The model characteristics include:

• Consideration of frequencies that can be detected

• Field-of-view

• Dwell time in a given direction

• Time required to search the entire FOV

• Signal thresholds

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-4 Update: 12/31/97

DRAFT

• Maximum track capability and priority rules for dropping tracks when the
maximum capability is exceeded.

• Finite resolution.

• The ability to cue a missile approach warning (MAW) device.

• An optional ability to measure range as well as direction is available.

• An optional ability to deduce an emission source for an emission type.

The Brawler pilot interacts with the RWR by looking at the RWR display. The priority he
attaches to this interaction depends on the side and number of entities in the RWR sector.
Detection of a previously unknown hostile aircraft or missile gives increased value to
observing the sector.

IFF/NCID

Identification friend-or-foe (IFF) and non-cooperative identification (NCID) techniques
are both treated. Aircraft can be equipped with devices that, when used, permit the
determination of the type of another aircraft. These are broadly classed as cooperative (a
transceiver is required on the target) or non-cooperative.

• IFF/NCID devices are characterized by reliabilities and characteristic
maximum ranges.

• Characteristic ranges can be either single numbers or can reflect interrogator
emission power, transponder gain patterns, and a parametric “ECM level.”

• Either a generic model, which treats the success of an interrogation
probabilistically, or a specific model, which additionally ties the device to the
aircraft’s radar, may be specified. The capability to utilize hostile IFF
capabilities parasitically is also available.

Missile Launch Warning Device

The missile warning device is an IR sensor that detects missiles in their burn phase. The
characteristics of the device include:

• A maximum detection range

• A frame, or cycle time associated with the time required to completely look at
all areas within the field-of-view (FOV)of the device

• A detailed FOV specification

• Information on the accuracy of directional measurements

The missile warning device triggers the Brawler pilot to look at the device display. He then
obtains information from the device track bank on the threat missile.

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-5 BRAWLER

DRAFT

Expendables

Brawler possesses a model of the effects of expendables on the performance of missiles.
The overall level of detail is as follows:

• Expendables may have one of several effects on a missile.

- The missile may be made to go ballistic shortly after employment.

- The missile may be made to fly out normally but have the endgame Pk
degraded to reflect the effects of the expendable on the missile guidance.

- The missile may be made to guide on the signal “centroid” of the
expendable and the target aircraft.

- A given expendable type will have only one kind of effect.

• The trajectory of expendables after they are launched is modeled explicitly.
Trajectories currently available include:

- Freely-falling (exponential decay to a vertical terminal velocity).

- Constant range, constant elevation tow behind the launching aircraft
(towed decoy).

• Expendables may be launched by pilots or by missile warning devices. The
latter may launch an expendable regardless of whether the pilot is aware of the
missile.

Sensor Fusion Devices (SFD) and Situation Awareness Networks (SAN)

Brawler is equipped with a generic sensor fusion device model that integrates detections
from designated contributing sensors into a common trackbank.

• Modified Kalman filtering schemes are used to integrate various detections, but
correlation problems in real SFDs are not currently treated.

• The impact of SFD is to permit the pilot to more efficiently obtain all
information regarding a target, reducing the time required to absorb sensor
information and also permitting the pilot to spend more time looking out-of-
cockpit.

A situation awareness network model is also available that permits the integration of sensor
information from multiple platforms.

• The ability to simulate unreliable or jammed links is present
• The designation of which platforms participate in each SAN is data-driven.
• Ground and airborne intercept and warning entities may be members of a SAN.

Additional Physical Features

Additional physical features of Brawler include:

• The ability to simulate ECM effects on missiles and voice communications.

• Weather (as it affects pilot visual capabilities and IR seekers).

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-6 Update: 12/31/97

DRAFT

• Ground Controlled Intercept/Airborne Warning and Control System (GCI/
AWACS).

• A surface-to-air missile (SAM) model and a surface-to-surface missile (SSM)
model are also available.

2.0.3 TYPICAL USES

Typical applications include hardware design trade-off studies for airframes, avionics and
weapons systems, and tactics development. The emphasis on hardware effectiveness is in
a realistic mission context. For example, a proposed radar system might have an increased
field-of-regard. Brawler could determine the degree to which this improvement enhances
the ability to perform a specific mission. Brawler has also been embedded as an intelligent
target generator in several manned simulator facilities, where it enhances the ability to
simulate large engagements.

2.0.4 ASSUMPTIONS AND LIMITATIONS

Top Level Software Design

Brawler is an event driven simulation. At the highest level, the major components consist
of the event scheduling and execution software and a separate component for each event
type. Event types generally correspond to either physical processes, such as weapon
flyouts, that are simulated by Brawler, or simulation management events that relate to the
structure and execution of the simulation. The various events are described below.

Overview of Physical Process Events

This section presents an overview of the different event types implemented in version V6.2
of Brawler that simulate hardware functions or human behavior. Many of these events are
not scheduled at regular intervals, but are timed to match the activity of the systems they
represent. For example, radar frame events are scheduled according to the frame time of
the radar, and sweep events are scheduled to occur at the time when the radar actually
sweeps the target.

Physical process events that occur repeatedly, such as consciousness events, are self-
planting. This means that when the event finishes execution, it schedules its own next
event. This allows the timing of events to change dynamically to reflect status changes
such as sensor mode changes. Events also check for their own obsolescence. For example,
when a consciousness event executes, it checks to see if the pilot is still alive. If not, the
event terminates and does not plant another consciousness event for that pilot. A separate
stream of events is generated for each event type that is associated with a single entity. For
example, there are separate radar events for every radar in the simulation.

Physical Process Event Types

Consciousness Event

This event simulates the decision making pilots and SAM site operators. A consciousness
event can be broken up into several phases, which are executed sequentially.

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-7 BRAWLER

DRAFT

Situation Update

During the situation assessment phase, the pilot makes new observations of other entities,
either visually, via receipt of a radio message, or by observing a sensor display. All of these
processes are simulated. The form of an observation differs for different types of sensors
and sensor modes. New observations are then used to update the pilot’s perception, or
“mental model” of the rest of the engagement.

Situation Assessment

The pilot's assessment of the current situation involves the evaluation of many derived
variables that define its various aspects. For example, functions are evaluated that reflect
the assessed intent of other aircraft, the degree to which one aircraft is threatened by
another, and the probability that an aircraft has been detected by a hostile flight. These
variables are generally expressed as either “surrogate probabilities” or as expected aircraft
values. A surrogate probability is a number in the range 0-1 that may be thought of loosely
as the probability that an event will occur.

Decision Making

During this phase, the pilot uses his current situation perception to make decisions
regarding tactics, maneuvers, sensor management, weapon selection and firing, and
whether or not to send radio messages. Once the pilot has made a decision, the actions that
he will take to implement the decision are simulated.

Communications Routing

The communications routine event executive is used to determine when and if radio
messages can be transmitted and takes into account the current channel usage and the
presence of communications jamming into account.

Weapon

Missile and gun event divided into the following event subtypes:

Internal Launch - Handles the launch of missiles by aircraft controlled by Brawler.

Missile Fly - Handles the flyout of missiles.

Missile Endgame - Executed when a missile fuzes, this function computes the result
of the missile detonation. If successful, it also kills the target aircraft and performs
any associated statistics collection and data structure cleanup.

Removal - Handles the removal of missile entities from the simulation after they have
detonated or gone ballistic.

Gun Endgame - Executed after a successful gun shot to kill the target aircraft and
perform any associated statistics collection and data structure cleanup.

External Launch - Handles the launch of missiles that are fired by another simulation
but are to be flown out. This allows other simulations in a model confederation to
retain their own weapon firing logic while using the Brawler missile model.

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-8 Update: 12/31/97

DRAFT

Rail - Handles simulation of seeker functioning for a missile before it leaves the
launching aircraft. This is done so that the effects of various countermeasures on
seeker acquisition can be simulated pre-launch.

Stand-off Jammer Update

Stand-off jammer orbits are specified as a series of straight, constant speed segments. Each
time a jammer reaches the end of the current segment, an update event is executed to reset
the speed and direction data describing the current segment to the next segment.

Communications Jammer Update

Resets the parametric jamming level for each communications channel based upon current
channel usage. In other words, the more heavily a channel is being used, the more heavily
it will be jammed, forcing users of that channel to change channels or lose the ability to
communicate. These events are executed regularly, at an interval that is set by the user in
the scenario file.

GCI/AWACS Controller Consciousness

This event simulates the decisions made by GCI/AWACS controllers. It has a similar
structure to the pilot consciousness event, in that it begins with a situation update phase,
then has a situation assessment phase, and finishes with a decision phase and action phase.
It differs in that the decisions and actions are all concerned with what messages to transmit
to aircraft under the direction of the controller. Messages can be simple observations, flight
vectors, or directions to execute specific tactics.

IRST Frame

Performs geometry and timing calculations to determine what targets might be detected
during the next IRST frame. For each potential detection, an IRST detection event
(described below), is planted.

IRST Detection

This event simulates a single sweep of an IRST across a target. It computes the received
signal and determines whether or not a detection is made. If so, the IRST trackbank is
updated for that target.

Jammer Status Control

Jammers can be off, on, or operating in a responsive mode, where they are off until swept
by a threat radar, at which time they turn on until the radar stops sweeping them. Jammer
status control events simulate this responsive behavior by turning jammers on and off based
upon the time and geometry at which each threat radar last illuminated the jammer.

Missile Warning

Missile launch warning (MW) events are planted when a missile is launched. A separate
event is planted for each target that might be able to detect the missile. When the event
executes, it determines whether or not a detection is made. If a detection occurs, an

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-9 BRAWLER

DRAFT

observation is generated and an alarm is triggered which causes the immediate execution
of a pilot consciousness event. Finally, an event is planted to cue the missile approach
warning radar, if the aircraft has one, and another MW event is planted for 0.1 seconds in
the future.

Radar

This is the event executive for the radar model. It is broken into the following event
subtypes:

Frame - Determines current radar mode and pattern. Then, determines what targets
may be detected during the next frame. For each of these, a radar sweep event is
scheduled.

Sweep - Handles a single sweep of the radar across a target (or group of non-
resolvable targets). Determines whether or not a detection occurs, taking into account
target signal, noise, jamming, and clutter. If a detection occurs, this event also
generates an observation of the target.

Miss - The radar model determines the status of tracks (established vs. not
established) based upon the criterion of m detections during the previous n frames,
where m and n are input data elements. Miss events are scheduled to track frames
during which no detections occur.

Bar - Brawler maintains an RF blackboard that records the RF emissions produced by
active sensors during an engagement. Radar bar events are executed to post the
emissions produced by each bar in a radar frame as the bar is swept. Emissions for
all of the bars in a frame are not posted at the beginning of the frame because the radar
may change mode or pattern before the frame finishes.

Switch Change - Brawler pilots can change the mode, pattern, or pattern position of
the radar. Switch change events are planted to simulate the time delay between the
pilot’s decision to change a radar setting and the response of the radar.

Radar Warning Receiver

Radar warning receiver (RWR) events are executed at regular intervals to determine
whether RWR devices can detect sidelobe emissions from radars carried on other
platforms. (Detections of mainlobe emissions are also calculated, but these calculations are
done at the time the emitter illuminates the RWR.) RWR sidelobe events traverse the RF
blackboard and evaluate candidate emissions that are posted there. Tests on emission type,
timing, power level, and location are performed.

Expendables

This event type handles the simulation of expendables and is broken into the following
subtypes:

Creation - Handles the initialization of expendable entities after they have been
launched.

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-10 Update: 12/31/97

DRAFT

Projection - Handles the physical projection of expendables after they have been
launched.

Removal - This event subtype handles the removal of expendables from the
simulation.

Mode Change - Users can change the mode of a repeater type expendable after it has
been launched via a production rules utility. This event subtype implements the mode
change.

Command Guided Missile Update

Handles the transfer of command guidance data from the aircraft transmitting the updates
to the missile. These events execute at an interval specified in the guidance data for the
missile.

Missile Approach Warning

Event executive for the missile approach warning (MAW) radar. Determines whether or
not detections occur for missiles already being tracked as well as in response to cueing from
other avionics devices such as a missile warning device. Updates a trackbank in response
to new observations. The MAW is also capable of launching expendables.

Situation Awareness Network

Brawler simulates situation awareness networks (SANs) using a central trackbank that is
fed by observations from all of the platforms on the net. Each time an observation is sent
to the net, a SAN event is scheduled to create or update the correct track.

IFF event

Computes the result of a pilot employing an IFF device to type an unknown aircraft. A
determination, based upon geometry, device types, and probabilities based upon device
reliability and interference, is made as to whether or not the attempt succeeds. If so, the
type of aircraft will be displayed on the pilot’s radar or sensor fusion device scope.

Overview of Simulation Management Events

Brawler also executes a number of event types that are not directly related to physical
processes. These events perform activities such as reporting data from the simulation for
later analysis, changing diagnostic prints at times specified by the user, internal data
structure cleanup, or controlling the execution of the simulation when running in
confederation with other simulations.

Simulation Management Event Types

Diagnostic Print Modifications

Brawler maintains a large set of diagnostic print switches that may be used by the analyst
to report detailed information from different components of the model during execution.
These can be useful for validation, debugging, study definition, or statistics collection. The
initial state of the diagnostic print switches is read from the scenario file during

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-11 BRAWLER

DRAFT

initialization. The user also has the option of changing the state of the print switches during
an engagement to reduce the amount of output data produced. Time dependent print
modifications are also specified in the scenario file by planting a print modification event.
When the event is executed, the status of the print switches is changed to the settings
specified by the user.

History File Output

During the course of an engagement, information is written to a history file. The history
file can then be used by the graphics post-processor and the event summary utility program.
Data related to non-periodic events, such as weapon firings, is written to the history file as
the events are executed. In addition, periodic updates of the current state of all players in
an engagement are also written. These periodic updates are performed during the history
file output events. The frequency of history file events is set in the scenario file by the user
and is read during initialization.

Checkpoint

The simulation can be restarted from a checkpoint file, which allows the user to pick up
execution in the middle of an engagement. This can be useful when debugging problems
that occur late in a complex scenario. Checkpoint files are generated during checkpoint
events. During a checkpoint event, all of the data needed to restart the engagement is
written to the checkpoint file. The times at which checkpoints are to be taken are set by the
user in the scenario file.

RF Blackboard Cleanup

RF blackboard events are executed periodically to remove obsolete entries on the RF
blackboard.

Confederation Synchronization

When Brawler is being run in a non-real time confederated mode with another simulation,
synchronization events are executed at regular intervals to exchange data between the
simulations. During a synchronization event, incoming messages are read and processed,
messages about current Brawler players are transmitted, and any aircraft that are to be
transferred to the other simulation are handed off. The event ends by sending an “end of
data” message that signals the other simulation that transmission is finished. The
synchronization interval, typically on the order of one second, is a user defined parameter.

2.0.5 LOGIC FLOW THROUGH MAJOR COMPONENTS

The flow of logic during Brawler execution is shown in Appendix A. The upper left corner
of the figure is the start of program execution after all initialization activities have been
completed. This is indicated by an “A” enclosed by a circle. All other enclosed As indicate
a return to this point. Similarly, other enclosed letters indicate transitions from one part of
the diagram to another. An enclosed Z indicates termination of the simulation.

The initial portion of the diagram shows the event scheduling and execution of the main
simulation. The logic flow through the consciousness, radar, and weapon events is
expanded in subsequent sections. Internal and external missile launch events are presented
under the weapon events as a single event type because they do not differ significantly in
their logical organization. The principal differences between them are in the set of data

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-12 Update: 12/31/97

DRAFT

structures that have to be initialized during the event. Circles containing the word “End”
in the event specific sections indicate the end of event execution and a return to the first
page of the diagram.

2.0.6 DATA FLOW THROUGH MAJOR COMPONENTS

At the highest level, data flow through Brawler is depicted in Figure 2.0-1. The ovals
represent various event types and the rectangles represent various types of data. The
“Central Status” data structures contain the ground truth states (position, velocity,
dead/alive, etc.) of all of the entities in the simulation. “Characteristics Data” are the data
that describe the physical characteristics of each type of hardware system in the simulation.
Characteristics data are read from input data files and do not change during the course the
simulation. “Status Data” are data that describe the current state of each system or
subsystem (radar power, mode, number of tracks, etc.) in the simulation. Status data will
change during the course of the simulation. The “Mental Status Arrays” or “mental
model”, contains a pilot or other operator’s current perception of the situation.

FIGURE 2.0-1. Brawler Data Flow.

Each hardware system has associated characteristics and status commons to hold the data
associated with it. Because characteristics do not change, there need only be one copy of
the characteristics data for a given type of system. Because status data will change, there
will be a separate set of status data for each instance of each type of system. For example,
a scenario that runs three radars of type A and four of type B will maintain one copy of type
A characteristics, one copy of type B characteristics, three copies of type A status and four

Central
Status
Arrays

(Physical
Observable

State
Variable)

Communication
Events

Weapons Events

Maneuver
Events

STATUS DATA
(Separate Instance for Each System Being Simulated)

Sensor
Events

Consciousness
Events

Situation
Assessment

Function

Decision
Functions

Execution

CHARACTERISTICS DATA
Reference Information

(Accessible by All Processors)

Mental
Status
Array

(Decision
Maker’s
“Mind”)

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-13 BRAWLER

DRAFT

of type B status. Each time an event for a particular hardware system is executed, it will
make use of the characteristics and status data for that system.

Likewise, each conscious player has a separate mental model. At any time, the contents of
each pilot’s mental model will be a function of the observations made by that pilot up to
that point. Pilot decision making is based upon the contents of the mental model, not upon
ground truth. This means that the pilot’s decision making is sensitive to the timeliness and
accuracy of the information provided by sensors and visual observations.

The basic flow of information through Brawler, then, is that the sensor models use ground
truth data, sensor characteristics, and status to produce detections. When a pilot looks at a
sensor display, those detections are observed and are incorporated into the pilot’s mental
model. Decisions use the contents of the mental model to produce actions, which then
cause changes in hardware status and ground truth by maneuvering aircraft, changing
avionics modes, sending messages, and launching missiles and expendables.

Input data consists of a scenario file that describes the initial loadouts, organization, and
disposition of the players in the simulation, data files that contain the characteristics data
for all of the systems to be used, and optional production rules data files that contain inputs
to user-written extensions to the simulation. Every event executed can write event related
data to the measures of performance (MOP) database, the diagnostic output file, IOUT, or
to the terminal screen. Periodic updates of entity state vectors and information related to
pilot decision making weapons and expendables employment are also written to the history
file, HIST, for later use by graphical post-processors.

2.0.7 SOURCE CODE HIERARCHY

The top-level source code hierarchy for Brawler is presented in Figure 2.0-2. A brief
overview of the functions of the subroutines in the hierarchy is presented here. This is
followed by a more detailed expansion of three representative event executives.

Brawler is an event-driven simulation, and the top level subroutines are the ones associated
with scheduling and execution of events. As is shown in the figure, subroutines prgini and
tflite are initialization routines, dealing with program initialization and reading from the
various input data files. Subroutines simdrv, donext, and dnxtev handle the scheduling and
execution of events. Subroutine finish is called at the end of the simulation to close data
files, perform final statistic computations, and to print any final diagnostics.

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-14 Update: 12/31/97

DRAFT

FIGURE 2.0-2. Top Level Source Code Hierarchy.

Below dnxtev are event executives, each of which handles the simulation of one of the event
types modeled. The figure lists the executives for the pilot consciousness, weapon, and
radar event executives. Brief descriptions of the various event types are given above.
Table 2.0-1 lists the names of the event executives.

ASTART
Time = 0

Get Next Event

Real-time Mode?

Yes

Ahead of Clock?

Yes

Wait

No No

No

Advance Clock

Set Diagnostics

Execute Event

Past End Time? Terminate Z
Yes Finish

B

C

D

Consciousness

Radar

Weapon

Brawler Main Simulation

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-15 BRAWLER

DRAFT

Consciousness event source code hierarchy

Figure 2.0-3 is an expansion of the consciousness event source code, showing the major
components of that event.

Subroutines flyac and perfrm are used to bring the aircraft of the currently conscious pilot
up to the current simulation time and to update the pilot’s knowledge of the current
performance capabilities of the aircraft.

TABLE 2.0-1. Brawler Event Executives.

Event Executive Event

Physical Process Events

conevt Consciousness

comrte Communications routing

mslevt Weapon

sojevt Stand-off jammer update

cjamev Communications jamming strength update

gcievt AWACS/GCI controller consciousness

framev IRST frame

irstev IRST detection

jcevt Jammer status control

mwevt Missile launch warning (MW)

rdrevt Radar

rwrevt Radar warning receiver (RWR) sidelobe detection

expevt Expendable

updtev Missile command guidance update

mawevt Missile approach warning (MAW)

sanevt Situation awareness net (SAN)

iffevt IFF device

Simulation Management Events

prnevt Diagnostic print switch modification

hevt History file update

chekpt Checkpoint

rfclev RF blackboard cleanup

sync_evt Confederation synchronization and data exchange event

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-16 Update: 12/31/97

DRAFT

FIGURE 2.0-3. Consciousness Event Source Code Hierarchy.

Subroutine sensor simulates the pilot’s observations of the sky and various cockpit avionics
displays. Under sensor, subroutine setsvl (“set sector values”) determines the order in
which the pilot will look at various sky sectors and avionics displays. Subroutine sctsch
(“sector search”) models the visual observation of each sector in the computed order until
time runs out. The routines under sctsch each simulate the observation of one visual sector,
computing the time required to observe that sector as well as the observations that are
actually made.

Subroutine inferl (“infer, late”, late because the inference occurs after the observations
have been processed) simulates the inferred detection of previously unknown aircraft that
may result from observations made under sensor. For example, observation of a missile
implies the existence of a launcher. If the pilot is not aware of any aircraft in the vicinity
of the missile launch, he is allowed to infer the presence of the launcher without having
directly observed it.

Consciousness Event

B
Start

Get event data

Event Still Relevant?
No

End

Situation Update

Initialize event

Situation Assessment

Make Decisions

Send Messages

Plant next consciousness event

End

Yes

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-17 BRAWLER

DRAFT

Subroutine mindup (“mind update”) simulates the incorporation and evaluation of new
information into the pilot’s situation perception, or “mental model.” Under mindup,
subroutine rcvobs (“receive observations”) incorporates new observations received via
radio messages from other aircraft or GCI/AWACS controllers. Subroutine cc2x0 handles
the update of pilot awareness of the physical state (position, velocity, type, side, etc.) of all
of the players in the engagement of which the pilot is aware. A similar routine, msl2x0, not
pictured, performs a similar function for observations of missiles.

Subroutine astyp (“assign type”) is used to try to assign a type to previously untyped
aircraft. Brawler pilots are allowed to infer the types of other aircraft if they are flying in
formation with aircraft whose types are known or if they exhibit overtly hostile actions such
as firing upon aircraft known to be friendly. Related routines asown (“assign missile
owner”) and astgt (“assign missile target”), not shown, are called to try to assign owners
and targets to missiles based upon observed missile trajectory and the current states of other
aircraft.

Subroutine rcv_intent (“receive intent to fire”) is called to process the receipt of an “intent
to fire” message from a friendly aircraft. These messages are sent to prevent two or more
aircraft from mistakenly targeting the same hostile.

It is possible to limit the number of other players that a pilot can actively consider when
making decisions. This number can be a global limit on all pilots or it can be a function of
pilot skill level. It can also vary with the stress level of the simulated pilot. Subroutine
mmordr (“mental model ordering”) is called to prioritize the aircraft in the pilot’s mental
model and then divide them into a “detailed consideration group” and all other players. The
assigned priorities result from a combination of factors, including relationship to the pilot
(i.e., flight leader gets a higher priority than another wingman), relative geometries, and
optional user input.

If the new observations made during this consciousness event contain significant
information, such as detections of new players, subroutine majud (“major update”) is called
to update the pilot’s assessment of the current situation. During a major update, situation
assessment measures are calculated that will be used later during the decision making
process. Situation assessment measures include factors such as lists of which players are
threats, force ratios, probabilities of kill and survival, etc. If the new observations do not
include significant information, subroutine minud (“minor update”) is called to perform a
less extensive minor update.

Subroutine preobs (“prepare observation messages”) is called to construct radio messages
from the currently conscious pilot to other players on his channel regarding newly detected
or typed aircraft or aircraft kills that were just observed.

After the mental model update has been completed, modsel (“mode selection”) is called to
simulate pilot decision making. Under modsel, pcode (“production rules code”) is the user
interface to the decision making process. Through these production rules, the user can issue
instructions or change the values assigned in mindup to reflect specific mission objectives.
Subroutine setspt (“set successor pointers”) determines which alternative courses of action
are to be considered for each kind of decision to be made. Subroutine declev (“decision
level”) determines what type of decision (flight posture, flight tactics, pilot posture,
maneuver, etc.) is to be made. Subroutine pkactn handles the generation, projection, and

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-18 Update: 12/31/97

DRAFT

scoring of available alternatives for the selected decision type, as indicated by the lower
level routines aslctX, aprojX, and aevalX. The results of the decision are implemented in
one of the akshnX routines.

Subroutine fncom (“final communications”) is called to send any messages that may have
been prepared during this consciousness event. This can include observation messages,
requests for information, intent to fire, or targeting assignments if the conscious pilot is a
flight or element leader.

Subroutines gcetim (“get consciousness event time”) and makece (“make consciousness
event”) are called to schedule the next consciousness event for this pilot. gcetim determines
when the event is to occur and makece fills in the data structures and plants the event in the
event heap.

Weapon event source code hierarchy

Figure 2.0-4 is an expansion of the weapon event source code, showing the major
components of that event. The missile event is broken into several subtypes, each of which
is discussed below.

Subroutine rail_ev handles the modeling of missiles after they have been selected but
before they have been fired. During this interval, the missile seeker and trackbank code are
executed so as to make the missile model sensitive to countermeasures that affect seeker
acquisition and, hence, delay firing. Subroutine all_msl_skrs simulates the functions of all
missile seekers that are on before the missile is fired. This includes simulation of seeker
movement and detection of signals. Subroutine msl_tkb_upd models the incorporation of
seeker observations into the missile’s internal trackbanks. Subroutine cage_skr recages the
missile seeker if it loses track of its target either due to hitting the seeker gimbal limit or
due to loss of signal. Finally, rail_acq determines whether or not the missile has acquired
a target. If more than one possible target is being tracked, the missile will acquire the
strongest signal, but only if it exceeds the others by a user specified amount. rail_acq is
structured so that it can be extended to accept other acquisition algorithms.

Subroutine mslaun simulates the actual launch of a missile. During a launch event,
subroutine mslrls is called to determine whether or not the missile successfully separates
from the aircraft. If so, the drag of the launcher is adjusted, the initial physical state of the
missile is set up, initial command guidance data is transmitted, if appropriate, and a final
rail event is executed to bring the seekers and trackbanks up to date for any seekers on at
launch.

Subroutine mslaun_e is executed for “external” missile launches. An external launch is one
that occurs when Brawler is running in confederation with another simulation and that other
simulation fires a missile that Brawler is to fly out. In such a case, mslaun_e is called to
initialize the physical state of the missile at the moment of launch and to begin the series of
flyout events for the missile.

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-19 BRAWLER

DRAFT

FIGURE 2.0-4. Weapon Event Source Code Hierarchy.

Weapon EventsStart D

Missile Launch
?

No

Yes
Launcher dead

?

Yes

End

No

Clear data structuresSuccessful Release
?

No

Yes

Adjust launcher
drag

Set seeker status

Command guided
?

Yes

No

Plant update event

Update seekers and
 tracks

Plant missile
flyout event Plant MW events

G

End

G

Missile Flyout
?

No

H

Update received
?

No

Retrieve update
data

Yes

Main loop done
?

Still flying
?

Yes

Set time step size

Run seekers

Update trackbanks

Update guidance

Move missile

Yes

Point seekers

No

Yes

Hit ground
?

Ballistic
?

Min. speed
?

No

No

No

Yes
Plant removal event

Yes

Yes

Plant next fly eventFuzed
?

Yes

No

Plant endgame event

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-20 Update: 12/31/97

DRAFT

Subroutine mslfev is the missile flyout event. It is executed at approximately one second
intervals for each missile in the air. During a fly event, subroutine mslfly is called to
simulate the missile’s activities from the end of the last fly event for this missile up to the
current simulation time. mslfly generally divides this time interval into smaller time steps
and executes each of the missile functions described below once during each time step.
This is done to improve the accuracy of the simulation. mslfly executes the same calls to
all_msl_skrs and msl_tkb_upd to determine missile seeker observations and trackbank
updates. Subroutine mcntrl selects a source for guidance inputs, either command guidance
data or an internally maintained target track, then calls one of several guidance routines to
execute the guidance law specific to that missile. Guidance commands from mcntrl are fed
into msldyn to move the missile forward according to the missile’s current state and
aerodynamic characteristics. Subroutine mslfuz determines whether the missile has
satisfied its fuzing criteria, and, if so, whether or not fuzing was successful. It should be
noted that successful fuzing does not imply a target kill, and that the determination of
whether or not the missile kills is deferred until the endgame event is executed. If, during
its flyout, the missile fails, either due to countermeasures or one of a number of possible
system failures whose probabilities are specified as input data, mblstc is called to put the
missile into a ballistic state. If the missile is not ballistic and hasn’t fuzed, skrdir is called
after the missile has been moved by msldyn to reorient the seeker. Seeker movement is a
function of target track position, missile movement, and seeker gimbal and rate limits.
After mslfly is executed, updgui is called to incorporate newly received command guidance
information, if any has been received.

The missile endgame event determines the results of a successful missile fuzing. The top
level routine in this event is mslend. It calls calc_pk to compute a probability of kill based
upon endgame geometry and the probability of kill algorithm specified for the missile.
After this, subroutines jpkfac and expdeg are called to account for the effects of any
jammers or expendables seen by the missile whose effect is to be modeled by degrading the
missile’s probability of kill. Once an adjusted probability of kill is computed, a random
draw against it is made and, if successful, the aircraft is destroyed by a call to killac.

Once a missile has either exploded or gone ballistic, a missile removal event is planted to
remove the missile from the simulation. The removal occurs immediately for missiles that
have exploded. For other missiles, the removal is delayed because pilots may not know the
missile has failed and should still have the opportunity to observe and react to it until it has
fallen well away from the engagement. Subroutine mremev performs the missile removal.

Gun firing is modeled more simply than missiles. No explicit bullet flyout events are
executed. Instead, the results of a gun shot are computed at the time that the shot is taken,
and if the shot succeeds, a gun endgame event is planted. Subroutine gendgm executes this
event, and consists of little more than a call to killac to destroy the target.

Radar event source code hierarchy

Figure 2.0-5 is an expansion of the radar event source code, showing the major components
of that event.

DRAFT
ASP-II for BRAWLER Conceptual Model Simulation

Update: 12/31/97 2.0-21 BRAWLER

DRAFT

FIGURE 2.0-5. Radar Event Source Code Hierarchy.

As with the weapon event discussed above, the radar event is divided into several subtypes,
each of which simulates different radar functions. The first of these is the frame event,
whose top level subroutine is rdrfev. The frame event simulates the overall functioning of
the radar. It is during this event that the current mode is determined, along with the scan
or TWS pattern selection and positioning. Scan and TWS patterns consist of a set of scan
bars of a set width, scan rate, and angular separation. Once the pattern has been determined,
subroutine schbar is called to plant bar events for each bar in the pattern. The frame event
also calls subroutine rrinfm to determine what targets will be illuminated during the current
frame, and rrscsw to schedule a radar sweep event for each target in the frame.

Subroutine rrbrev implements the bar event. The purpose of a bar event is to determine the
radar emission parameters for the bar and to post an emission record on the Brawler RF
blackboard that records this information. Bars are not posted during the radar frame event
because the radar may change mode during a frame, in which case not all of the bars would
be scanned.

Subroutine rdrsev is the top level routine for the radar sweep event. A sweep event is
executed to simulate a single sweep of the radar across a target or a group of unresolvable
targets. During a sweep event, subroutine rrdtct is called to determine whether or not a

Radar Events

No

Start C

Get event data

Frame Event
?

Sweep Event
?

No

No

No

Abort

Miss Event
?

Update trackbank
Process mode

changes
Position pattern

Schedule bar
events

Schedule sweep
events

Plant next frame
event

Process sweep
Process RWR

mainlobe detections
Update semi-active

missiles

Bar Event
?

Compute bar
parameters

Post emission on
RF Blackboard

Set sweep event
parameters End

Switch Change Event
?

Compute max
frame time

Record misses Plant next miss
event

Load pilot
decisions

Process switch
changes

Need new frame
?

No

No

Yes

Yes

Yes

Yes

Yes

Yes

F

F

Z

DRAFT
Conceptual Model Simulation ASP-II for BRAWLER

BRAWLER 2.0-22 Update: 12/31/97

DRAFT

detection occurs and, if so, to compute the observation data and update the radar trackbank.
Subroutine rwr_ml_det is called to execute RWR mainlobe detection code for each target
that has been illuminated that is carrying an RWR device. Subroutine rrsnm is called to
schedule missile fly events for any semi-active missiles fired at the target that are being
supported by this radar.

The radar miss event is executed by subroutine rdrmev. Miss events are used to determine
whether or not a radar track has timed out and been disestablished or purged because the
radar has not made any recent observations of that target.

Finally, the radar switch change event is executed to process changes in radar mode,
pattern, or position that have been dictated by the pilot or the user. Whenever a Brawler
pilot decides to change his radar mode or reposition the radar pattern, this decision is
recorded as a desired change. A switch change event is then planted for a short time in the
future. The time delay accounts for human reflexes and the fact that radars cannot change
instantaneously. When the switch change event is executed by a call to rdr_sw_chg, the
desired radar settings are translated into actual settings and a new radar frame event is
executed by a direct call to rdrevt.

2.0.8 IMPLICATIONS FOR MODEL USE

This design is focused on sequential processing of events and information perceived via
pilot observations rather than upon effectiveness of aircraft and their weapons. Even
through relative differences in effectiveness can be inferred from outcomes, proper use of
the simulation should be focused on more subtle timing, reactions, and decisions that
contribute to those results. In other words intended uses of the software were planned to
encompass evaluations of factors that affect pilot perception, reactions, and performance
rather than comparisons of aircraft platforms, sensors and weapons.

